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Matter-Antimatter Asymmetry

(H. Murayama)

BBN + CMB data:

ηB ≡
nb − nb̄

nγ

= (6.2 ± 0.15) × 10−10

Can be dynamically generated provided the Sakharov conditions ( 6B, 6C
and 6CP, out of equilibrium) satisfied.

SM prediction is too small ∼ 10−20.

Require new sources of CP and B − L violation.

From lepton sector??



Leptogenesis

Lepton asymmetry converted to baryon asymmetry by sphaleron
processes. [Fukugita, Yanagida ’86]

Introduce heavy SM singlet sterile neutrinos (N):

LN = (YDL̄ΦN + h.c.) + MNNN

6L comes from the Majorana mass term (MN ) of these heavy
neutrinos.

Yukawa couplings (YD) provide new source of CP violation.

Asymmetry generated in the out-of-equilibrium decay of the heavy
sterile neutrino for ΓN < H(T = MN).

Also explains the observed small LH neutrino masses via seesaw
mechanism.



CP Asymmetry

[Covi, Roulet, Vissani ’96]

ǫiα =
Γ(Ni → LαΦ) − Γ(Ni → L̄αΦ†)

Γ(Ni → LαΦ) + Γ(Ni → L̄αΦ†)
=

1
8π

∑

j 6=i

Im[(YY †)2
ij ]
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β |Yiβ|2
f

(

M2
j

M2
i
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where f (x) =
√

x
h

1 − (1 + x) log
“

1+x
x

”i

is the L-violating self-energy and vertex loop factor.



Scale of RH neutrino mass

Vanilla Leptogenesis [Davidson, Ibarra ’02]

Hierarchical RH neutrino masses (M1 ≪ M2):

f
(

M2
2

M2
1

)

≃ −
M1

2M2

Requires M1 >∼ 109 GeV for sufficiently large CP-asymmetry.
Gravitino problem – requires TRH <∼ 109 GeV. (see talk by O. Seto)
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Resonant leptogenesis [Pilaftsis, Underwood ’04]

Quasi-degenerate RH neutrino masses (M1 ≃ M2):

f
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)

≃
(M2

2 − M2
1 )M2

1

(M2
2 − M2

1 )2 + (M2Γ2 − M1Γ1)2

Possible to have M1 as low as ∼ TeV!
“Collider-friendly” provided Yukawa couplings are large enough.
Interesting effects in flavor sector. (see talk by F. Deppisch)



Departure from thermal equilibrium

Effective B − L asymmetry generated by decay of the lightest
heavy RH neutrino.

Solve Boltzmann equations in expanding universe to get the
deviation from its equilibrium distribution.

dNN1

dz
= −(D + S)(NN1

− Neq
N1

),

dNB−L

dz
= −ǫ1D(NN1

− Neq
N1

) − WNB−L

D = ΓD/(Hz) accounts for decays and inverse decays.
S = ΓS/(Hz) represents the ∆L = 1 scatterings.
W = ΓW /(Hz) is the washout term (contributed by inverse decay
and ∆L = 1, 2 processes) competing with the decay source term.



Some Definitions

Washout parameter

K =
ΓD(z = ∞)

H(z = 1)
=

m̃1

m∗

where m̃1 =
(M†

DMD)11
M1

(effective neutrino mass) and

m∗ ≃ 1.08 × 10−3 eV (equilibrium neutrino mass).
Efficiency factor

κ(z) =

∫ z

zi

dz′ dNN1

dz′
D

D + S
e−

R z′′

z′ dz′′W (z′′)

κf = κ(∞) → 1 for N1
N1

= Neq
N1

and W = 0.
Baryon asymmetry

ηB =
asph

f
ǫ1κf ≃ 10−2ǫ1κ1(∞)



Leptogenesis with Type-I Seesaw

SM singlet RH Majorana neutrinos (N).
[ Minkowski ’77; Yanagida ’79; Glashow ’79; Gell-Mann, Ramond, Slansky ’80; Mohapatra,

Senjanović ’80]

Lmass = (LMDN + h.c.) + NMNN

Mν =

(

0 MD

MT
D MN

)

; mlight
ν

= −MDM−1
N MT

D

TeV-scale MN possible only for tiny Yukawas: MD <∼ me.

Both dilution and washout effects very large: D
D+S ≪ 1 and W ≫ 1 –

highly suppressed efficiency!

Not “LHC-friendly” for heavy gauge bosons: MZ ′ > 2.5 TeV for B − L
models [Blanchet, Chacko, Granor, Mohapatra ’09] and MWR > 18 TeV for LR
models [Frere, Hambye, Vertongen ’08].



Inverse Seesaw

Mostly Dirac N. Add another gauge singlet Majorana fermion
S. [Mohapatra ’86; Mohapatra, Valle ’86]

Lmass = (LMDN + NMNS + h.c.) + SµS

Mν =





0 MD 0
MT

D 0 MN

0 MT
N µ



 ;

mlight
ν

≃
(

MDM−1
N

)

µ
(

MDM−1
N

)T
for µ ≪ MN

TeV scale MN even with large MD ∼ mt for µ ∼ keV.

Smallness of µ is natural in ’t Hooft sense.

Distinct collider phenomenology. [del Aguilla, de Blas ’09]

Also observable effects in the leptonic sector. [BD, Mohapatra ’09]



Leptogenesis in Inverse Seesaw

Large Yukawa (∼ 10−1 − 10−2) =⇒ Large D.

The naive washout parameter is also very large (due to inverse decay).
For TeV RH neutrino mass,

K1 =
(M†

DMD)11

M1m∗

∼ 1012



Leptogenesis in Inverse Seesaw

Large Yukawa (∼ 10−1 − 10−2) =⇒ Large D.

The naive washout parameter is also very large (due to inverse decay).
For TeV RH neutrino mass,

K1 =
(M†

DMD)11

M1m∗

∼ 1012

However, destructive interference within each quasi-Dirac RH neutrino
pair in inverse seesaw:

MRH =

(

0 MN

MT
N µ

)

Mass splitting within (i, j) pair: Mi − Mj ∝ µii .

Define effective washout parameter K eff
1 = δ2

1K1 where

δ1 =
|M1 − M2|

Γ1
≃

µ11

Γ1
∼ 10−6

for ∆L = 2 washout process ℓΦ → ℓ̄Φ†. Makes K eff
1 ∼ O(1).



Gauge Scattering Effects

Similar destructive interference effects for gauge scatterings
(small S).
Processes involving two external heavy-states (e.g.

NN Z ′

→ eRēR , qRq̄R and NN
WR→ eRēR) are doubly Boltzmann

suppressed.
Also lepton flavor equilibration (ℓαΦ ↔ ℓβΦ) means flavor effects
not important in this case.
(for flavor effects in gauge scatterings, see talk by P. Schwaller)



Decay and Scattering Rates
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The Efficiency Factor

κi(z) ≃
Z z

z0

dz′
dNeq

Ni
(z′)

dz′

D(Ki , z′)

D(Ki , z′) + DWR
(z′) + 4SZ ′Neq

Ni
(z′) + SWR

(z′)

×exp

"

−
Z z

z′
dz′′

(

X

i

WID(Ki , z′′) + WWR
(z′′)

)

δ2
i

#

D ≫ S =⇒ Small dilution effect: D
D+S ∼ O(1).

δ2
i ≪ 1 =⇒ Small washout effect: W δ2 ≡ K eff ∼ O(1).

Combination of µ2 suppression and Yukawa enhancement make
the efficiency factor essentially independent of WR mass.

Lower bounds on WR and Z ′ much weakened (below 1 TeV).



Efficiency and CP Asymmetry
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Baryon Asymmetry
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Summary

TeV Scale LR symmetry compatible with leptogenesis for inverse
seesaw.

Magnitude of 6L Majorana mass is directly proportional to the
neutrino mass, instead of inversely as in usual Type-I case.

Allows Yukawa couplings to be large (of order 0.1).

Keeps both washout and dilution in control.

Lowers the allowed range of WR and Z ′ mass to “collider
accessible” region.

Makes leptogenesis accessible at LHC.
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